5 things wrong with data visualization dashboards.

Many companies are shifting from Excel spreadsheets towards dashboards, built with data visualization tools like Tableau and Microsoft BI, as the preferred way to share important statistical information through an organisation.

The objective of this shift is to make data-driven insights more widely available across an organisation and, to encourage data-driven decision making by managers.

Unfortunately, in many cases, a company's investment in data analytics fails to unleash the potential of data across an organization. Simply put: the industry-standard data visualisation dashboard is failing to win over management. Here are 5 of the many reasons why -

1. Poorly designed dashboards complicate noise and diminish signals.

I have seen dashboards with 12 or more competing charts included on a single page. When dashboards display too much information on one page, we don't know where to look, and as a result of the visual confusion we may overlook the most important messages contained on the page.

2. Signals are hidden behind click paths making executives search for important information.

Busy executives don't have time to waste clicking around an interface blindly searching for the information they need right now. One VP told me "I don't want another tool to interact with; that's what my team of ten business analysts are paid to do. I want the insights displayed immediately without having to click around to find them".

3. Confusing use of colour.

Using colour is difficult because each new colour that's added to a dashboard increases the complexity of colour relationships exponentially. It takes years to learn how to control colour relationships. Even formally educated artists and designers struggle to use colour properly.

When colour is applied without proper consideration it can confuse people and actually work against comprehension of the signal.

4. Similar charts are used to display completely different data sets making it difficult to know the difference.

Dashboards typically resort to familiar charts - pie charts, bar graphs, line charts - to explain completely different datasets. This is like hitting every problem with the same hammer.

While template charts are quick and easy to work with, different datasets should be given proper consideration, in isolation, in order that their signals are described clearly.

5. Sometimes a chart is not even the answer.

Unsurpisingly an organisation's business analysts are numerate, and numbers speak to them, but many of their colleagues are not numerate. People have different strengths and waeknesses and different learning preferences.

For some recipients, a chart is never the right way to communicate a signal to them.

Conclusion:

Dashboard templates are quick and dirty, but they aren't effective communication tools in many situations. Therefore, a company's investment in data analytics may fall flat. However, by engaging a professional information design specialist you can transform the communication potential of data-driven insights across your organisation.


Otomatek: